Square Difference 3-Equitable Labeling of Paths and Cycles

ثبت نشده
چکیده

A square difference 3-equitable labeling of a graph G with vertex set V is a bijection f from V to {1, 2,.... | V | } jg such that if each edge uv is assigned the label -1 if |[f (u)]2 [f (v)]2 | = -1(mod 4), the label 0 if |[f (u)]2 [f (v)]2 | = 0(mod 4) and the label 1 if |[f (u)]2 [f (v)]| = 1(mod 4), then the number of edges labeled with i and the number of edges labelled with j differ by atmost 1 for -1 = I, j = 1. If a graph has a square difference 3-equitable labeling, then it is called square difference 3-equitable graph. In this paper, we investigate the square difference 3-equitable labeling behaviour of paths and cycles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Square Difference 3-Equitable Labeling of Paths and Cycles

A square difference 3-equitable labeling of a graph G with vertex set V is a bijection f from V to {1, 2,.... | V | } jg such that if each edge uv is assigned the label -1 if |[f (u)]2 [f (v)]2 | = -1(mod 4), the label 0 if |[f (u)]2 [f (v)]2 | = 0(mod 4) and the label 1 if |[f (u)]2 [f (v)]| = 1(mod 4), then the number of edges labeled with i and the number of edges labelled with j differ by a...

متن کامل

Square Difference 3-Equitable Labeling of Paths and Cycles

A square difference 3-equitable labeling of a graph G with vertex set V is a bijection f from V to {1, 2,.... | V | } jg such that if each edge uv is assigned the label -1 if |[f (u)]2 [f (v)]2 | = -1(mod 4), the label 0 if |[f (u)]2 [f (v)]2 | = 0(mod 4) and the label 1 if |[f (u)]2 [f (v)]| = 1(mod 4), then the number of edges labeled with i and the number of edges labelled with j differ by a...

متن کامل

Square Difference 3-Equitable Labeling of Paths and Cycles

A square difference 3-equitable labeling of a graph G with vertex set V is a bijection f from V to {1, 2,.... | V | } jg such that if each edge uv is assigned the label -1 if |[f (u)]2 [f (v)]2 | = -1(mod 4), the label 0 if |[f (u)]2 [f (v)]2 | = 0(mod 4) and the label 1 if |[f (u)]2 [f (v)]| = 1(mod 4), then the number of edges labeled with i and the number of edges labelled with j differ by a...

متن کامل

Square Difference 3-Equitable Labeling of Paths and Cycles

A square difference 3-equitable labeling of a graph G with vertex set V is a bijection f from V to {1, 2,.... | V | } jg such that if each edge uv is assigned the label -1 if |[f (u)]2 [f (v)]2 | = -1(mod 4), the label 0 if |[f (u)]2 [f (v)]2 | = 0(mod 4) and the label 1 if |[f (u)]2 [f (v)]| = 1(mod 4), then the number of edges labeled with i and the number of edges labelled with j differ by a...

متن کامل

Square Difference 3-Equitable Labeling of Paths and Cycles

A square difference 3-equitable labeling of a graph G with vertex set V is a bijection f from V to {1, 2,.... | V | } jg such that if each edge uv is assigned the label -1 if |[f (u)]2 [f (v)]2 | = -1(mod 4), the label 0 if |[f (u)]2 [f (v)]2 | = 0(mod 4) and the label 1 if |[f (u)]2 [f (v)]| = 1(mod 4), then the number of edges labeled with i and the number of edges labelled with j differ by a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018